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ABSTRACT

The possibility is examined of studying the behavior of elastic
solids on the basis of a model which considers them to be made
up by a very large nimaber of elementary particles arranged in a
regular lattice array. Some of the simplifications which are
needed (e.g., the neglect of surface tension) to make the anal-
ysis practical are examined, first in general terms and then
for the simple case of a bar in tension.
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1. Introduction

The analysis of the stresses and deformations of solids is normally carried

out on the basis of a continuum model, whether classical or exhibiting some sort

• of microstructure, which represents macroscopically the actual discrete struc-

ture of the material. Alternatively, a discrete model can be used, and there are

then two basic ways in which one might proceed. In the first, we start from the

continuum model, and replace it by a discrete one by means of suitable partition-

ing into appropriate units. This is the basis of very powerful methods of anal-

ysis , such as those employing finite elements or finite differences. The great

• value of these approaches is well known and need not be discussed here.

A second approach consists in starting with the discontinuous structure and

attempting to perform calculations imsediately on that basis. This has been

tried (e.g.,[l,2J); in these works the body is considered to be composed of a

relatively small number of material points, interactions between them being con-

sidered numerically. To represent more realistically the actual material, how-

ever, one would think that a very large number of material points should be used--

so large, in fact, that a continuum may in some sense be approached. It is un-

• likely that a purely numerical approach is useful in this connection, because of

the enormous number of points being considered ; it is however possible that

analytical techniques may be introduced to assist in the calulations. An exam-

ination of the latter possibility forms the subject of this paper.

The present approach starts with the consideration of a large number of

material points , representing atoms and thus being assumed to be separated by

distances of atomic dimensions. Atomic forces are assumed to act between them

in accordance with the appropriate laws of attraction and repulsion, necessitating

the establishment of equilibrium equations at each point. These equations are

then simplified by neglecting the effect of surface tension [3), and by the use

of Saint Venant’s princip le; this allows a mathematical, shift to a continuum

and thus solution of the problem.
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This approach therefore involves postponing as long as possible the tran-

sition from the lattice to the continuum model, This has the advantage that the

transition fr om one to the other can be examined from the standpoint of a purely

mathematical approximation, and thus, at least in principle, any errors incurred

can be easily ascertained. The problem chosen here is the simplest one possible,

namely that of a bar in tension, and one may have serious doubts whether the

present approach can be extended to any but the mast elementary cases. It is

nevertheless hoped that the present analysis may be of some interest in illus-

trating the concepts involved and the difficulties that might be encountered.

- • 
2. Basic Considerations

Consider two particles, located respectively at Pj(xi,yj,zj) and

p~(x~,y1,z~) and separated by a distance r
~jI = ru . Let the force between

them be ~~~~~~~ and act along r’~j~ i.e., so that its components are

(I i  ) ~ ~~~~~~~~ ~~~(1~~i) (1)

where jF’~J I — ~~~ During deformation, the particles undergo displacements

and respectively. The consequent change in the components (I) is easily

calculated, and gives the additional force between the particles, on the assump-

tion of infinitesimal deformations, as

- (~~i1 - !u\ ~~~ (uf Uj ) 
- !n (~ - i~ (2)iJ \~r~~ tj j l r~j 

t j j  \

It will be next assumed, as is usual [4,5], that the force between particles

represents the difference between an attractive (positive) and a repulsive term, or

F ,,~~T , mk 
- 

nB (3)ij ~~ m+l n+ltjj  rjj
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corresponding to a potential

v i  f -A .  ; n > m > o  (3a)
rjj rjj

where A and B are constants. The term in parenthesis is eq.(2) is then

~~ij - - 
n(n + 2)8 

- 
m(m + 2)A (4

r n+2 m+2U U) ru r~ .

It is now easy, in principle, to see how one should proceed: the resultant

force on each particle, exerted by all other particles, is set equal to zero

if the particle is internal, and equal to the appropriate applied force if the

particle is on the surface (on the assumption that only surface forces are

applied). Practically, however, this would give rise to a prohibitive number

of equations and unknowns, and it is therefore necessary to simplify the problem.

To that end, two surface effects will be neglected. The first of these is the

one conventionally disregarded in continuum solutions on the basis of Saint

Venant’s principle, which allows the details of distribution of the forces

applied over a small surface are to be overlooked, since they practically do not

affect the solution outside a thin surface layer.

The second neglected effect does not arise in classical elasticity,

although it arises in continuum theories exhibiting microstructure [3J. It

refers to the presence of surface tension, and is also confined to a thin layer

adjacent to the surface of the body. The thickness of this layer however, of the

order of the atomic dimensions, and therefore much smaller than that of the

Saint Venant layer, the latter being of the order of the linear dimensions of

the loaded area. Hence surface tension affects an extremely small portion of the

body and can safely be neglected if (as is presently desired) a solution anal-

ogous to the classical one is sought.

To clarify the above general remarks, the special example of a uniform bar

-3—
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in tension will be considered. —

3. A Bar in T ension

Consider a uniform bar, extending in the x-direction, and pulled in that

direction by an end-force P, all other surfaces being free of applied loads.

Consider first the forces in the y-direction on a generic U-tb particle;

equilibrium requires that —

~ 5F~~~ — o for all i (5)
all j

where 6Fjj~ is the y-component of Assume for sintplicity of discussion

that the particles occupy the vertices of a simple cubic lattice, and that

y—constant represents one of the free faces of the bar. Consider first the —

portion of the suimnation which refers to the y-direction: as one proceeds

further and further from a face into the interior of the body, more and more

planes of particles appear in the s~mmiation. This gives rise to the surface

effect previously referred to, and which is limited to very few such planes; to

disregard it is equivalent to neglecting the presence of a physical surface,

except as a place where loads may be applied. In other words the body is math-

ematically considered to extend beyond its actual surface, sufficiently far

that the same type of equilibrium equations hold at all planes regardless of

their distance from the surface. The same argument holds for all surface of

the body, and eq.(5) for our problem can then be written as:

~ 6F~~ — o for all i (6)

where R is a distance chosen to be sufficiently large to include the entire bar

and what additional portion is needed to eliminate the surface effects; it will

be seen that, for ease of calculattone, it may at times be taken as infinite.

-4-
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For any value of i, the y-portion of the st~~ation can now be separated into the

two regions Yj ~ 
y~ and Yj > since no forces in this direction are any-

where applied, each of these regions must separately yield a zero resultant, or

(with sysmetry in the other directions):

R 7i R R ft ft

4 ~ ôF~~ a ; 4~ ~ ~ 6F~~ = ° (7)
X

J
IIIO Yf -R Z

J
iUI O X

J
”O 

~‘f~’i+l 
ZfO

The treatment of equilibrium in the z-direction is entirely analogous; so is

that for the x-direction except for the introduction of the applied force P, or

xi ft ft

4~ ~ 6F~~~ = p

Xf1 -R YfO ZfO 1:

(8)

R R R
4~ ~ 

6Fjj~~~~-P

xfxi+l YJ
”O ZfO

In this manner the local surface effects have been eliminated , but the presence

of applied surface loads has been accounted for,

Assume now,either by similarity to the classical solution or as an inde-

pendent semi-inverse assumption, and on the basis of Saint Venant’s principle,

that the displacement components of a generic point P~ can be taken to be

— ax~ ; vi — by~ ; wi — bzi (9)

where a and b are constants. The components of are then

— [a~~~
1 + (b - a)(~~~ 

- .l)(
Thll+ 
]
~~ )]

(10)

— 
jjZ 

— b il + (a - b) ( i 1  
- !IJ.’\ .~ _l

\~ r jj n j
)

—5-
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- z
~ 

(11)

The second ones of eqs. (7) and (8) then become, respectively,

bS1 + ( a - b)S 2 — o
(12)

aS1 + 2(b 
- a)S2 — P

where

S~, = ~~~ ~1 
- (l3a)

P~—o r~”h C=o ‘~ P=h ~~o ~
=o ~~~~

— ~~~~ 

(~
‘i] 

- !.t.t) .
~f 

(13b)

~—o ri—h C—a ij

and where h — 
(~i+l 

- is the side of the basic cube in the lattice. The

other fo rms of S2, obtained by permutation of ~~~ and c~ 
have not been shown in

eq. (13b) for the sake of brevity, and the subscripts ii have been dropped from

these quantities for simplicity of writing. It then appears that the first of

eqs.(7) and (8) are also satisfied, because use of (12) automatically insures

that the equilibrium equations are satisfied for all values of i.

Solution of (12) gives

P(S2 - S~) PS2a — s1(3S2 - S1) 
; b — 

S1(3S2 
- S1) 

(14)

In particular, we may define Poisson’s ratio as

(15)

There now remains the evaluation of S1 and S2: this may be performed either

in a direct numerical fashion, or in an approximate analytical manner by

replacing the sum over discrete points by integrals over a cont~.nuum . The latter

-6-
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approach will now be followed; it exemplifies the previously discussed trans-

ition to a continuum model at a late stage of the analysis.

4. Evaluation of Sums

The crapeziodal rule, usually employed to approximate integrals by means of

sums, may be conversely used to approximate and present sums by means of integrals.

Then, provided R is large enough,

= 
U 

~ r d  r d  ~

(16)
R R R  

~F 2
= I $ $ (~r~

’ - d~ dr~ dC

h h h ~

where r2 
= i’~ + c

2. Then , with (3) and (4), we have

2 
- 

1 
- 

1 1
it m-2) 

(R2+h2) ~ 
ft) m 2  

(Afl h) m ’2j

- B(~ 
~ ~~~[ R

2+h2~~~~
2 / 2  - ~~~~ft) fl~ Z 

- 

~~~~h)~~~
2]

(17)

- A (mR2+2h2) (si+2)

[R
2+h2

’
m~2 

m- 2) 

- 

2 (in- 2) ~~

B ~ 
(nR2+2h2) (n+2) 1- 

2(n-2) (~~ h) 1
~~2j
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Evaluation of these quantities requires a knowledge of m,n,A,B, and h, as

well as a choice of ft. We can however derive some general information, partic-

ularly about Poisson’s ratio, without such detailed knowledge, but by inserting

eqs.(l7) into (15), and then simplifying the resulting expression on the basis of

the inequalities

~~n-m

B 41 ; — 4 1  (18)
BR

and recalling that in < n. Three cases must now be distinguished , namely:

(in > 2, n > 2), (in < 2, n > 2), and (in < n < 2); then (18) permits the expres-

sions obtained for Poisson’s ratio from eq.(15) to be reduced to:

n + 2
~~~~3(n + 2) for n > 2 , a ny m < n  (19a)

in f o r m < n < 2  (19b)m + Z

It is easy to see that, from eq. (l9a), (1/3) < ‘~~ < (1/2) , while from eq. (l9b)

we have o < v < (1/2). Thus, in agreement with experimental observation, v never

exceeds 1/2 , but any positive value less than 1/2 is possible. Most metals, for

example, fall in the former category [5]. Analyses such as the present one can

be used to determine in or n from a knowledge of Poisson ’s ratio, or , conversely,

to predict v on the basis of a postulated atomic behavior. The adaptation of the

concepts discussed here to more complicated problems will of course have to await

fi~rther work along these lines.
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